

#### **Outline**



- MarCO Mission Summary
- Spacecraft Overview
- Attitude Control System Design
- Propulsion System Design
- Ground Testbed Overview
- Test Data
  - Sun pointing
  - Tipoff control
- Flight Data
  - Initial contact
  - Trajectory correction maneuver

# **MarCO Mission Summary**





## **MarCO Mission Summary**









3) EDL Relay Demo Real-time 8 kbps Fly-by





**Earth** 

2) Early Cruise Tech Demo
Of Telecom and TCM
Technologies

| Technology                           | Mission Objectives                                              |
|--------------------------------------|-----------------------------------------------------------------|
| Threshold                            |                                                                 |
| Miniaturized deep space radio (IRIS) | Successful uplink and downlink at multiple data rates + ranging |
| Flat Panel Antenna                   | Receipt of telemetry at 8kbps                                   |
| TCMs on a Cubesat                    | Execution of TCM 1                                              |
| Baseline                             |                                                                 |
| Cubesat in deep space                | Viable operations beyond Earth orbit                            |
| Relay                                | Bent-pipe during Insight EDL                                    |

# **MarCO Spacecraft**





### **MarCO Internal Components Overview**





# **Key MarCO Body Vectors**



| Name                          | Vector                      | Use                                               |  |  |
|-------------------------------|-----------------------------|---------------------------------------------------|--|--|
| TCM Delta-V Thrust Direction  | [0, 0, -1]                  | Trajectory correction                             |  |  |
| Radiator Normal               | [0, -1, 0]                  | Thermal management                                |  |  |
| Star Tracker Boresight        | [0, sin(10°), -cos(10°)]    | Attitude determination, 10°x12° FOV, 1024x1280 px |  |  |
| Solar Array Normal            | [0, 1, 0]                   | Power generation, thermal management              |  |  |
| High Gain Antenna Boresight   | [0, sin(22.7°), cos(22.7°)] | High-rate communications with the DSN             |  |  |
| Medium Gain Antenna Boresight | [0, sin(22.7°), cos(22.7°)] | Medium-rate communications with the DSN           |  |  |
| Low Gain Antenna Boresight    | [0, 0, -1]                  | Low-rate communications with the DSN              |  |  |
| UHF Antenna Boresight         | [0, -1, 0]                  | UHF relay                                         |  |  |
| Narrow Angle Camera Boresight | [0, -1, 0]                  | Public relations, 3.4° half-angle FOV             |  |  |
| Wide Angle Camera Boresight   | [0, sin(62°), cos(62°)]     | HGA deployment verification, 77° half-angle FOV   |  |  |



### **ACS/Prop Interface and Interaction**



- All commands to propulsion system pass through the XACT
  - Ground commands for XACT's autonomous management of thrusters or for direct thruster actuation
  - Onboard ACS Manager (ACSM) prevents multiple ACS commands from being sent at once and reduces complexity of larger command sequences by acting on flag toggling



## **Propulsion System Overview**





Delta V Budget [m/s]

|                            | TCM1  | TCM2 | TCM3 | TCM4 | TCM5  | Total |
|----------------------------|-------|------|------|------|-------|-------|
| Worst-<br>Case<br>Estimate | 22.70 | 8.40 | 2.40 | 0.42 | 0.11  |       |
| Sum                        |       |      |      |      |       | 34.03 |
| Systems Margin             |       |      |      |      |       | 5.97  |
| Total Capacity             |       |      |      |      | 40.00 |       |

#### Propellant Mass Budget

| Disturbance Torques     | Propellant Mass [g] |  |  |
|-------------------------|---------------------|--|--|
| Momentum Management     | 150                 |  |  |
| Detumbling              | 50                  |  |  |
| Reaction Control Margin | 100                 |  |  |
| Reaction Control Total  | 300                 |  |  |
| Delta-V Propellant Need | 1200                |  |  |
| Delta-V Margin          | 370                 |  |  |
| Unusable Propellant     | 30                  |  |  |
| Total Propellant        | 1900                |  |  |

#### **TCM and RCS Thrusters**





- TCM thrusters are inner four thrusters (2, 3, 6, 7) provide axial force through off-pulsing
- RCS thrusters are used to correct for attitude excursions during DeltaV-mode firings
- DeltaV maneuvers require actuating the both tank/plenum valve and thruster valves
- DeltaV command requires both a total burn time across all thrusters and a wall-clock bound for the firings – duty cycle value informs the bound so that the specified accumulated burn time is reached before the cutoff

#### **MarCO Ground Testbed**





- Separation Switch circuit like FM

- CDH/EPS/Interface Boards: like FM

- Battery: like FM

IRIS: like FM1

- XACT: like FM, but 1 CSS

- Propulsion System electronics only

**Simulators** 

- XACT ACS simulator- Realtime Dynamics Processor ("RDP")



### **Ground Testbed Test: Sun Pointing**



- Key safe mode functionality for ACS is to point the spacecraft to the sun to remain power positive
- RDP simulates the inputs to the sun sensors; SRU active but not included in estimator
- Base case: static spacecraft that must point to the sun
- Reaction wheels rotate the spacecraft to be stably sun-pointed within one minute of the command
- System momentum remained unchanged during the maneuver



### **Ground Testbed Test: Tipoff Control**



- More challenging sun point scenario occurs after deployment when the spacecraft could be tumbling
- Expected <2 deg/s/axis tipoff rates, so tested robustness to 30 deg/s/axis
  - High rate above momentum storage capacity of reaction wheels
- Thrusters fire to reduce body rates/system momentum to level at which reaction wheels take over
  - Reaction wheels not powered during thruster firings
- Achieve stable sun pointing within two minutes of command
- Serves as basic mission scenario test



### Flight Data: First Telemetry



- First contact with the spacecraft was a pair of "beeps"
- Receive only (no commands sent) for five and seven minutes, respectively
- Each beep contained key telemetry to assess health of spacecraft
- Reaction wheel speeds indicate momentum stored after the desaturation if it was necessary and overall spacecraft attitude stability





## Flight Data: MCOA TCM2 Cleanup Maneuver



- TCMs performed in segments, with cleanup maneuvers for fine-tuning
- Off-pulsing thrusters is required for maintaining desired thrust direction
- Thruster controller is non-adaptive, so commanded thrust direction accounts for uncertainty in thrust levels and mass properties
- Spacecraft exhibits characteristic "nod" at start of burn, eventually corrected by reaction wheels at end of firing







### **Key Lessons Learned**



- Autonomous reaction wheel desaturations and directly commanded firings do not increment thruster accumulated burn times
- 2-phase propellant cannot use tank pressure as a metric for remaining fuel load
- TCM commands must account for controller accuracy to achieve desired pointing
- SRU can lose tracking lock from high rate slews and initial slew transients, which can lead to premature TCM cutoffs
- Parameterized fault protection values enable in-flight adjustments to tune spacecraft behaviors



